A Comparative Study of Human Thermal Face Recognition Based on Haar Wavelet Transform and Local Binary Pattern
نویسندگان
چکیده
Thermal infrared (IR) images focus on changes of temperature distribution on facial muscles and blood vessels. These temperature changes can be regarded as texture features of images. A comparative study of face two recognition methods working in thermal spectrum is carried out in this paper. In the first approach, the training images and the test images are processed with Haar wavelet transform and the LL band and the average of LH/HL/HH bands subimages are created for each face image. Then a total confidence matrix is formed for each face image by taking a weighted sum of the corresponding pixel values of the LL band and average band. For LBP feature extraction, each of the face images in training and test datasets is divided into 161 numbers of subimages, each of size 8 × 8 pixels. For each such subimages, LBP features are extracted which are concatenated in manner. PCA is performed separately on the individual feature set for dimensionality reduction. Finally, two different classifiers namely multilayer feed forward neural network and minimum distance classifier are used to classify face images. The experiments have been performed on the database created at our own laboratory and Terravic Facial IR Database.
منابع مشابه
A Comparative Study of Human thermal face recognition based on Haar wavelet transform (HWT) and Local Binary Pattern (LBP)
Thermal infra-red (IR) images focus on changes of temperature distribution on facial muscles and blood vessels. These temperature changes can be regarded as texture features of images. A comparative study of face recognition methods working in thermal spectrum is carried out in this paper. In these study two local-matching methods based on Haar wavelet transform and Local Binary Pattern (LBP) a...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملFusion of Wavelet Coefficients from Visual and Thermal Face Images for Human Face Recognition - A Comparative Study
In this paper we present a comparative study on fusion of visual and thermal images using different wavelet transformations. Here, coefficients of discrete wavelet transforms from both visual and thermal images are computed separately and combined. Next, inverse discrete wavelet transformation is taken in order to obtain fused face image. Both Haar and Daubechies (db2) wavelet transforms have b...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملThermal Human face recognition based on Haar wavelet transform and series matching technique
Thermal infrared (IR) images represent the heat patterns emitted from hot object and they don’t consider the energies reflected from an object. Objects living or non-living emit different amounts of IR energy according to their body temperature and characteristics. Humans are homoeothermic and hence capable of maintaining constant temperature under different surrounding temperature. Face recogn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012